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Shark: SQL and Analytics with Cost-Based Query
Optimization on Coarse-Grained Distributed Memory

Antonio Lupher

ABSTRACT
Shark is a research data analysis system built on a novel coarse-
grained distributed shared-memory abstraction. Shark pairs query
processing with deep data analysis, providing a unified system for
easy data manipulation using SQL while pushing sophisticated anal-
ysis closer to its data. It scales to thousands of nodes in a fault-
tolerant manner. Shark can answer queries over 40 times faster
than Apache Hive and run machine learning programs on large
datasets over 25 times faster than equivalent MapReduce programs
on Apache Hadoop. Unlike previous systems, Shark shows that it is
possible to achieve these speedups while retaining a MapReduce-
like execution engine, with the fine-grained fault tolerance prop-
erties that such an engine provides. Shark additionally provides
several extensions to its engine, including table and column-level
statistics collection as well as a cost-based optimizer, both of which
we describe in depth in this paper. Cost-based query optimization
in some cases improves the performance of queries with multiple
joins by orders of magnitude over Hive and over 2× compared to
previous versions of Shark. The result is a system that matches the
reported speedups of MPP analytic databases against MapReduce,
while providing more comprehensive fault tolerance and complex
analytics capabilities.
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1 Introduction
It has become feasible and even commonplace to store vast quan-
tities of data. However, simply storing data is rarely useful. New
ways are needed to process and extract value from it efficiently.
Modern data analysis employs statistical methods that go well be-
yond the roll-up and drill-down capabilities provided by traditional
enterprise data warehouse (EDW) solutions. While data scientists
appreciate the ability to use SQL for simple data manipulation, they
still generally rely on separate systems for applying machine learn-
ing techniques to the data. What is needed is a system that con-
solidates both. For sophisticated data analysis at scale, it is im-
portant to exploit in-memory computation. This is particularly true
with machine learning algorithms that are iterative in nature and ex-
hibit strong temporal locality. Main-memory database systems use
a fine-grained memory abstraction in which records can be updated
individually. This fine-grained approach is difficult to scale to hun-
dreds or thousands of nodes in a fault-tolerant manner for massive
datasets. In contrast, a coarse-grained abstraction, in which trans-
formations are performed on an entire collection of data, has been
shown to scale more easily.1

1.1 Coarse-grained Distributed Memory

Our current system, Shark, is built on top of Spark, a distributed
memory abstraction for in-memory computations on large clusters
called Resilient Distributed Datasets (RDDs) [53]. RDDs provide
a restricted form of shared memory, based on coarse-grained trans-
formations on immutable collections of records rather than fine-
grained updates to shared states. RDDs can be made fault-tolerant
based on lineage information rather than replication. When the
workload exhibits temporal locality, programs written using RDDs
outperform systems such as MapReduce by orders of magnitude.
Surprisingly, although restrictive, RDDs have been shown to be
expressive enough to capture a wide class of computations, rang-
ing from more general models like MapReduce to more specialized
models such as Pregel [37].

It might seem counterintuitive to expect memory-based solutions
to help when petabyte-scale data warehouses prevail. However, it
is unlikely, for example, that an entire EDW fact table is needed to
answer most queries. Queries usually focus on a particular subset
or time window, e.g., http logs from the previous month, touching
only the (small) dimension tables and a small portion of the fact
table. Thus, in many cases it is plausible to fit the working set
into a cluster’s memory. In fact, [9] analyzed the access patterns in
the Hive warehouses at Facebook and discovered that for the vast
majority (96%) of jobs, the entire inputs could fit into a fraction of
the cluster’s total memory.

1.2 Introducing Shark

Shark (originally derived from “Hive on Spark") is a new data ware-
house system capable of deep data analysis using the RDD memory
abstraction. It unifies the SQL query processing engine with ana-
lytical algorithms based on this common abstraction, allowing the
two to run in the same set of workers and share intermediate data.

Apart from the ability to run deep analysis, Shark is much more
flexible and scalable compared with EDW solutions. Data need
not be extracted, transformed, and loaded into the rigid relational
form before analysis. Since RDDs are designed to scale horizon-
tally, it is easy to add or remove nodes to accommodate more data
or faster query processing. The system scales out to thousands of
nodes in a fault-tolerant manner. It can recover from node failures
1MapReduce is an example of a system that uses coarse-grained
updates, as the same map and reduce functions are executed on all
records.

gracefully without terminating running queries and machine learn-
ing functions.

Compared with disk-oriented warehouse solutions and batch in-
frastructures such as Apache Hive [47], Shark excels at ad-hoc,
exploratory queries by exploiting inter-query temporal locality and
also leverages the intra-query locality inherent in iterative machine
learning algorithms. By efficiently exploiting a cluster’s memory
using RDDs, queries previously taking minutes or hours to run
can now return in seconds. This significant reduction in time is
achieved by caching the working set of data in a cluster’s memory,
eliminating the need to repeatedly read from and write to disk.

In the remainder of this project report, we sketch Shark’s sys-
tem design and give a brief overview of the system’s performance.
Due to space constraints, we refer readers to [53] for more details
on RDDs. We then focus our attention to collecting statistics on
tables and columns, which forms the basis for the system’s new
cost-based join optimizer.

2 Related Work
To the best of our knowledge, Shark, whose details have been pre-
viously described in a SIGMOD demonstration proposal and pa-
per [51, 22], is the only low-latency system that efficiently com-
bines SQL and machine learning workloads while supporting fine-
grained fault recovery.

We group large-scale data analytics systems into three categories.
First, systems like ASTERIX [13], Tenzing [17], SCOPE [16],
Cheetah [18] and Hive [47] compile declarative queries into MapRe-
duce jobs (or similar abstractions). Although some of them modify
their underlying execution engine, it is difficult for these systems to
achieve interactive query response times for various reasons.

Second, several projects aim to provide low-latency engines us-
ing architectures resembling shared-nothing parallel databases. Such
projects include PowerDrill [27] and Impala [1]. These systems
do not support fine-grained fault tolerance. In case of mid-query
faults, the entire query needs to be re-executed. Google’s Dremel [38]
does rerun lost tasks, but it only supports an aggregation tree topol-
ogy for query execution, and not the more complex shuffle DAGs
required for large joins or distributed machine learning.

A third class of systems takes a hybrid approach by combining a
MapReduce-like engine with relational databases. HadoopDB [6]
connects multiple single-node database systems using Hadoop as
the communication layer. Queries can be parallelized using Hadoop
MapReduce, but within each MapReduce task, data processing is
pushed into the relational database system. Osprey [52] is a middle-
ware layer that adds fault-tolerance properties to parallel databases.
It does so by breaking a SQL query into multiple small queries and
sending them to parallel databases for execution. Shark presents
a much simpler single-system architecture that supports all of the
properties of this third class of systems, as well as statistical learn-
ing capabilities that HadoopDB and Osprey lack.

Shark builds on the distributed approaches for machine learning
developed in systems like Graphlab [36], Haloop [15] and Spark [53].
However, Shark is unique in offering these capabilities in a SQL
engine, allowing users to select data of interest using SQL and im-
mediately run learning algorithms on it without time-consuming
export to another system. Compared to Spark, Shark also provides
far more efficient in-memory representation of relational data and
mid-query optimization using PDE.

Shark’s cost-based optimizer uses query optimization techniques
from traditional database literature. The breadth of research on join
optimization in databases is extensive. The work at IBM on System
R in the 1970s was particularly groundbreaking and our implemen-
tation of a cost-based optimizer for joins is largely based on their
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work [11][44].
Optimizing joins in the MapReduce framework and, more specif-

ically, Hive, has also attracted some research attention. Afrati and
Ullman [7] outline existing algorithms and propose a new one for
joins in a MapReduce environment. Gruenheid et al. [26] demon-
strated that column statistics collection in Hive was beneficial for
join optimization. In addition to implementing statistics collection
and a basic optimizer, the authors emphasize the importance for
any query optimizer for a MapReduce-based system to employ a
cost function that accounts for the additional I/O cost of interme-
diate shuffles, since MapReduce often requires hefty volumes of
intermediate data to be written to disk. Given Shark’s hash-based,
in-memory shuffle instead of Hadoop’s sort-based, on-disk shuffle,
this consideration is somewhat less relevant for Shark. While it ap-
pears that their choice of which statistics to collect influenced the
development of Hive’s own statistics collection, the join optimizer
was, to the best of our knowledge, never made public nor integrated
into the main Hive code base.

Previous work on Shark [51] introduced partial DAG execution,
which helps join performance through run-time re-optimization of
query plans. This resembles adaptive query optimization techniques
proposed in [12, 48, 35]. It is, however, unclear how those single-
node techniques would work in a distributed setting and scale out
to hundreds of nodes. In fact, PDE actually complements some
of these techniques, as Shark can use PDE to optimize how data
gets shuffled across nodes and use the traditional single-node tech-
niques within a local task. DryadLINQ [32] optimizes its number
of reduce tasks at run-time based on map output sizes, but does not
collect richer statistics, such as histograms, or make broader exe-
cution plan changes, such as changing join algorithms, like PDE
can. RoPE [8] proposes using historical query information to opti-
mize query plans, but relies on repeatedly executed queries. PDE
works on queries that are executing for the first time. Partial DAG
execution allows Shark to identify smaller tables during the pre-
shuffle stage, allowing dynamic selection of a map-join instead of
the shuffle join selected by the static optimizer. This optimization
achieved a threefold speedup over the naïve, statically chosen plan.
However, the cost-based optimizer introduced in the current paper
provides gains orthogonal to this optimization, as a map-join can
be combined with optimized join ordering to improve performance
of queries with multiple joins even further.

3 Apache Hive
Hive is an open-source data warehouse system built on top of Hadoop.
It supports queries in a SQL-like declarative query language, which
is compiled into a directed acyclic graph of MapReduce jobs to be
executed on Hadoop. Similarly to traditional databases, Hive stores
data in tables consisting of rows, where each row consists of a spec-
ified number of columns. The query language, HiveQL is a subset
of SQL that includes certain extensions, including multi-table in-
serts, but lacks support for transactions, materialized views and has
limited subquery support.

Figure 1 shows an overview of the architecture of Hive. A num-
ber of external interfaces are available including command line,
web interface, Thrift, JDBC and ODBC interfaces. The metas-
tore is essentially analogous to a system catalog in an RDBMS and
contains a database (often MySQL or Derby) with a namespace
for tables, table metadata and partition information. Table data is
stored in an HDFS directory, while a partition of a table is stored
in a subdirectory within that directory. Buckets can cluster data
by column and are stored in a file within the leaf level directory
of a table or partition. Hive allows data to be included in a table
or partition without having to transform it into a standard format,

Hive

Hadoop)+)HDFS

CLI

Driver
Metastore

Compiler
Parser

Thrift)Server

JDBC ODBC

Web)Interface

Query)
Optimizer

Query)
Optimizer

Execution
Engine

Figure 1: Hive Architecture

saving time and space for large data sets. This is achieved with sup-
port for custom SerDe (serialization/deserialization) Java interface
implementations with corresponding object inspectors.

The Hive driver controls the processing of queries, coordinat-
ing their compilation, optimization and execution. On receiving a
HiveQL statement, the driver invokes the query compiler, which
generates a directed acyclic graph (DAG) of map-reduce jobs for
inserts and queries, metadata operations for DDL statements, or
HDFS operations for loading data into tables. The Hive execution
engine then executes the tasks generated by the compiler and inter-
acts directly with Hadoop.

The generation of a query plan DAG shares many steps with a
traditional database. A parser first turns a query into an abstract
syntax tree (AST). The semantic analyzer turns the AST into an in-
ternal query representation and does type-checking and verifies col-
umn names. The logical plan generator then creates a logical plan
as a tree of logical operators from the internal query representation.
The optimizer rewrites the logical plan to add predicate pushdowns,
early column pruning, repartition operators to mark boundaries be-
tween map and reduce phases and to combine multiple joins on the
same join key. The physical plan generator transforms the logical
plan into a physical plan DAG of MapReduce jobs.

4 Shark System Overview
As described in the previous section, Shark is a data analysis sys-
tem that supports both SQL query processing and machine learning
functions. Shark is compatible with Apache Hive, enabling users
to run Hive queries much faster without any changes to either the
queries or the data. Shark now supports compatibility through Hive
version 0.11, with support of version 0.12 still underway.

Thanks to its Hive compatibility, Shark can query data in any
system that supports the Hadoop storage API, including HDFS and
Amazon S3. It also supports a wide range of data formats such
as text, binary sequence files, JSON and XML. It inherits Hive’s
schema-on-read capability and nested data types [47].

In addition, users can choose to load high-value data into Shark’s
memory store for fast analytics, as illustrated below:

CREATE TABLE latest_logs
TBLPROPERTIES ("shark.cache"=true)

AS SELECT * FROM logs WHERE date > now()-3600;

Figure 2 shows the architecture of a Shark cluster, consisting of
a single master node and a number of worker nodes, with the ware-
house metadata stored in an external transactional database. It is
built on top of Spark, a modern MapReduce-like cluster computing
engine. When a query is submitted to the master, Shark compiles
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Figure 2: Shark Architecture

the query into operator tree represented as RDDs, as we shall dis-
cuss in Section 4.4. These RDDs are then translated by Spark into
a graph of tasks to execute on the worker nodes.

Cluster resources can optionally be allocated by a resource man-
ager (e.g., Hadoop YARN [2] or Apache Mesos [29]) that provides
resource sharing and isolation between different computing frame-
works, allowing Shark to coexist with other engines like Hadoop.

In the remainder of this section, we cover the basics of Spark and
the RDD programming model and then describe how Shark query
plans are generated and executed.

4.1 Spark
Spark is the MapReduce-like cluster computing engine used by
Shark. Spark has several features that differentiate it from tradi-
tional MapReduce engines [53]:

1. Like Dryad [31] and Hyracks [14], it supports general com-
putation DAGs, not just the two-stage MapReduce topology.

2. It provides an in-memory storage abstraction, Resilient Dis-
tributed Datasets (RDDs), that lets applications keep data in
memory across queries and automatically reconstructs any
data lost during failures [53].

3. The engine is optimized for low latency. It can efficiently
manage tasks as short as 100 milliseconds on clusters of
thousands of cores, while engines like Hadoop incur a la-
tency of 5–10 seconds to launch each task.

RDDs are unique to Spark and are essential to enabling mid-
query fault tolerance. However, the other differences are important
engineering elements that contribute to Shark’s performance.

In addition to these features, previous work has modified the
Spark engine for Shark to support partial DAG execution [51],
that is, modification of the query plan DAG after only some of the
stages have finished, based on statistics collected from these stages.
Similar to [35], this technique is useful for making initial optimiza-
tions to joins.

4.2 Resilient Distributed Datasets (RDDs)
As mentioned above, Spark’s main abstraction is resilient distributed
datasets (RDDs), which are immutable, partitioned collections that
can be created through various data-parallel operators (e.g., map,
group-by, hash-join). Each RDD is either a collection stored in an
external storage system, such as a file in HDFS, or a derived dataset
created by applying operators to other RDDs. For example, given
an RDD of (visitID, URL) pairs for visits to a website, we might
compute an RDD of (URL, count) pairs by applying a map operator
to turn each event into an (URL, 1) pair and then a reduce to add
the counts by URL.

visits 
(HDFS file) 

(URL, 1) 
pairs counts 

map reduceByKey 

Figure 3: Lineage graph for the RDDs in our Spark example.
Oblongs represent RDDs, while circles show partitions within
a dataset. Lineage is tracked at the granularity of partitions.

In Spark’s native API, RDD operations are invoked through a
functional interface similar to DryadLINQ [32] in Scala, Java or
Python. For example, the Scala code for the query above is:

val visits = spark.hadoopFile("hdfs://...")
val counts = visits.map(v => (v.url, 1))

.reduceByKey((a, b) => a + b)

RDDs can contain arbitrary data types as elements (since Spark
runs on the JVM, these elements are Java objects) and are automat-
ically partitioned across the cluster, but they are immutable once
created and they can only be created through Spark’s deterministic
parallel operators. These two restrictions, however, enable highly
efficient fault recovery. In particular, instead of replicating each
RDD across nodes for fault-tolerance, Spark remembers the lineage
of the RDD (the graph of operators used to build it) and recovers
lost partitions by recomputing them from base data [53].2

For example, Figure 3 shows the lineage graph for the RDDs
computed above. If Spark loses one of the partitions in the (URL,
1) RDD, for example, it can recompute it by rerunning the map on
just the corresponding partition of the input file.

The RDD model offers several key benefits in our large-scale in-
memory computing setting. First, RDDs can be written at the speed
of DRAM instead of the speed of the network, because there is no
need to replicate each byte written to another machine for fault-
tolerance. DRAM in a modern server is over 10× faster than even a
10-Gigabit network. Second, Spark can keep just one copy of each
RDD partition in memory, saving precious memory over a repli-
cated system, since it can always recover lost data using lineage.
Third, when a node fails, its lost RDD partitions can be rebuilt in
parallel across the other nodes, allowing speedy recovery.3 Fourth,
even if a node is just slow (a “straggler”), we can recompute nec-
essary partitions on other nodes because RDDs are immutable so
there are no consistency concerns with having two copies of a par-
tition. These benefits make RDDs attractive as the foundation for
our relational processing in Shark.

4.3 Fault Tolerance Guarantees

To summarize the benefits of RDDs, Shark provides the following
fault tolerance properties, which have been difficult to support in
traditional MPP database designs:

2We assume that external files for RDDs representing data do not
change, or that we can take a snapshot of a file when we create an
RDD from it.
3To provide fault tolerance across “shuffle” operations like a par-
allel reduce, the execution engine also saves the “map” side of the
shuffle in memory on the source nodes, spilling to disk if necessary.
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1. Shark can tolerate the loss of any set of worker nodes. The
execution engine will re-execute any lost tasks and recom-
pute any lost RDD partitions using lineage.4 This is true
even within a query: Spark will rerun any failed tasks, or
lost dependencies of new tasks, without aborting the query.

2. Recovery is parallelized across the cluster. If a failed node
contained 100 RDD partitions, these can be rebuilt in parallel
on 100 different nodes, quickly recovering the lost data.

3. The deterministic nature of RDDs also enables straggler mit-
igation: if a task is slow, the system can launch a speculative
“backup copy” of it on another node, as in MapReduce [20].

4. Recovery works even for queries that combine SQL and ma-
chine learning UDFs, as these operations all compile into a
single RDD lineage graph.

4.4 Executing SQL over RDDs

Shark runs SQL queries over Spark using a three-step process simi-
lar to that used in a traditional RDBMS: query parsing, logical plan
generation and physical plan generation.

Given a query, Shark uses the Hive query compiler to parse a
HiveQL query and generate an abstract syntax tree. The tree is
then turned into a logical plan and basic logical optimization, such
as predicate pushdown, is applied. Up to this point, Shark and Hive
share an identical approach. Hive would then convert the operator
into a physical plan consisting of multiple MapReduce stages. In
the case of Shark, its optimizer applies additional rule-based opti-
mizations, such as pushing LIMIT down to individual partitions,
and creates a physical plan consisting of transformations on RDDs
rather than MapReduce jobs.

In a typical Shark query, the bottom of the query plan contains
one or more table scan operators that create RDDs representing the
data already present in an underlying storage system. Downstream
operators then transform these RDDs to create new RDDs. In other
words, operators take one (or more, as in the case of joins) RDDs as
input, and produce an RDD as output. We use a variety of operators
already present in Spark, such as map and reduce, as well as new
operators we implemented for Shark, such as broadcast joins.

For example, the following Scala code implements a filter oper-
ator.

class FilterOperator extends Operator {
override def execute(input: RDD): RDD = {

input.filter(row =>
predicateEvaluator.evaluate(row))

}
}

Given a tree of operators, the final RDD produced by the root
operator represents how the entire result of the query can be com-
puted, making reference to downstream RDDs. It is important to
note that the operators themselves only compute the RDD repre-
senting the result, but not the result itself. The RDD is computed
using the operator tree on the master. The master then submits it to
Spark for execution in a cluster, which finally materializes the re-
sult. Spark’s master then executes this RDD graph using standard
MapReduce scheduling techniques, such as placing tasks close to
their input data, rerunning lost tasks and performing straggler mit-
igation [53].

While this basic approach makes it possible to run SQL over
Spark, doing it efficiently is challenging. The prevalence of UDFs

4Support for master recovery could also be added by reliably log-
ging the RDD lineage graph and the submitted jobs, because this
state is small, but we have not implemented this yet.

and complex analytic functions in Shark’s workload makes it diffi-
cult to determine an optimal query plan at compile time, especially
for new data that has not undergone ETL. In addition, even with
such a plan, naïvely executing it over Spark (or other MapReduce
runtimes) can be inefficient. In the next section, we discuss sev-
eral extensions we made to Spark to efficiently store relational data
and run SQL, starting with a mechanism that allows for dynamic,
statistics-driven re-optimization at run-time.

4.5 Columnar Memory Store
In-memory computation is essential to low-latency query answer-
ing, given that the throughput of memory is orders of magnitude
higher than that of disks. Naïvely using Spark’s memory store,
however, can lead to undesirable performance. For this reason,
Shark implements a columnar memory store on top of Spark’s na-
tive memory store.

In-memory data representation affects both space footprint and
read throughput. A naïve approach is to simply cache the on-disk
data in its native format, performing on-demand deserialization in
the query processor. However, this deserialization has the potential
to become a major bottleneck. In our experience, we saw that mod-
ern commodity CPUs can deserialize at a rate of roughly 200MB
per second per core.

The approach taken by Spark’s default memory store is to store
data partitions as collections of JVM objects. This avoids deseri-
alization, since the query processor can use these objects directly.
However, this leads to significant storage space overhead. Com-
mon JVM implementations require an additional 12 to 16 bytes of
space per object object. For example, storing 270 MB of TPC-H
lineitem table as JVM objects uses approximately 971 MB of mem-
ory, while a serialized representation requires only 289 MB, reduc-
ing space requirements by nearly a factor of three. A more serious
implication for performance, however, is the effect on garbage col-
lection (GC). With an average record size of, say, 200 B, a heap of
32 GB can contain 160 million objects. The JVM garbage collec-
tion time correlates linearly with the number of objects in the heap,
so it could take minutes to perform a full GC on a large heap. These
unpredictable, expensive garbage collections cause large variability
in response times, and were one of the largest obstacles we faced
in early versions of Shark.

Shark stores all columns of primitive types as JVM primitive
arrays. Complex data types supported by Hive, such as map and
array, are serialized and concatenated into a single byte array.
Each column creates only one JVM object, leading to fast GCs and
a compact data representation. The space footprint of columnar
data can be further reduced by cheap compression techniques at vir-
tually no CPU cost. Similar to columnar database systems, e.g., C-
store [45], Shark implements CPU-efficient compression schemes
such as dictionary encoding, run-length encoding and bit packing.

Columnar data representation also leads to better cache behavior,
especially for for analytical queries that frequently compute aggre-
gations on certain columns.

4.6 Distributed Data Loading
In addition to query execution, Shark also uses Spark’s execution
engine for distributed data loading. During loading, a table is split
into small partitions, each of which is loaded by a Spark task. The
loading tasks use the data schema to extract individual fields from
rows, marshal a partition of data into its columnar representation,
and store those columns in memory.

Each data loading task tracks metadata to decide whether each
column in a partition should be compressed. For example, the
loading task will compress a column using dictionary encoding
if its number of distinct values is below a threshold. This allows
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each task to choose the best compression scheme for each partition,
rather than conforming to a global compression scheme that might
not be optimal for local partitions. These local decisions do not
require coordination among data loading tasks, allowing the load
phase to achieve a maximum degree of parallelism, at the small
cost of requiring each partition to maintain its own compression
metadata. It is important to clarify that an RDD’s lineage need
not contain the compression scheme and metadata for each parti-
tion. The compression scheme and metadata are simply byproducts
of the RDD computation, and can be deterministically recomputed
along with the in-memory data in the case of failures.

As a result, Shark can load data into memory at the aggregated
throughput of the CPUs processing incoming data.

4.7 Query Execution Example
Consider a Twitter-like application where users can broadcast short
status messages and each user has certain profile information e.g., age,
gender and location. The status messages themselves are kept in a
messages table along with a unique user identifier. Due to the vol-
ume of messages, they are partitioned by date. A profiles table con-
tains user information including country, gender and age for each
user id.

CREATE TABLE messages (user_id INT, message STRING)
PARTITIONED BY (ds STRING);

CREATE TABLE profiles (user_id INT, country STRING,
age INT);

LOAD DATA LOCAL INPATH ’/data/messages’
INTO TABLE messages PARTITION (ds=’2011-12-07’);
LOAD DATA LOCAL INPATH ’/data/profiles’

INTO TABLE profiles;

Suppose we would like to generate a summary of the top ten
countries whose user have added the most status messages on Dec.
7, 2011. Furthermore, we would like to sort these results by number
of messages in descending order. We could execute the following
query:

FROM (SELECT * FROM messages a
JOIN profiles b ON
(a.user_id = b.user_id and a.ds=’2011-12-07’)

) q1
SELECT q1.country, COUNT(1) c

GROUP BY q1.country ORDER BY c DESC LIMIT 10

The query contains a single join followed by an aggregation. Fig-
ure 4 is the query plan generated by Hive showing its map and re-
duce stages. Figure 5 shows the query plan as it is processed by
Shark. For this query, Hive generates a three-stage map and reduce
query plan. Note that the intermediate results after each MapRe-
duce stage are written to HDFS in a temporary file in the FileSink
operators. Since Spark and the RDD abstraction do not constrain us
to the MapReduce paradigm, Shark can avoid this extra I/O over-
head by simply writing intermediate results to local disk. Shark
simply creates a new RDDs for each operator, reflecting an oper-
ator’s transformation on the RDD that resulted from the previous
operator’s transformation. Any leaf operator is a table scan that
generates an RDD from an HDFS file.

Suppose that no previous queries have been run on this data or
at least none have similar operator subtrees to the current query.
At each operator stage where an RDD is substantially transformed,
Shark adds the resulting RDD to the cache if caching for the given
operator has not been disabled in the Shark configuration file.

Now, suppose that we would now like to query the same data
to find the number of messages grouped by age instead. We could
execute the following query.

File%Output
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Reduce%Output
sort:%user_id
sort%order:%+
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Figure 4: Hive query plan
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Figure 5: Shark query plan
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FROM (SELECT * FROM messages a
JOIN profiles b ON
(a.user_id = b.user_id and a.ds=’2011-12-07’)

) q1
SELECT q1.age, COUNT(1) c

GROUP BY q1.age ORDER BY age

Apart from the omission of reading and writing intermediate data
to HDFS, Shark’s query plan is essentially identical up through the
join by operator, so instead of generating new RDDs for each oper-
ation, existing RDDs for these operators will be found in memory.
This is illustrated in Figure 5. The subsequent filter, group by and
order by operations require new transformations, and their resulting
RDDs are stored in memory for future queries to use.

5 Cost-Based Query Optimizer
We have implemented a cost-based query optimizer in Shark that
uses table and column statistics to select more efficient join order-
ings on queries involving relations for which statistics are available.
The main goal in the initial version of this extension was not neces-
sarily to pick the cheapest join plan possible in absolute terms, but
rather to at least avoid selecting particularly bad orders.

Shark already supports map-join optimizations, which broadcast
small tables to all the nodes involved in a join, thus eliminating the
need for a shuffle. This is allowed both via hints supplied explicitly
by users as well as via automatic conversion to map-join during par-
tial DAG execution. However, the benefits of map-joins are limited
to tables small enough that they can be broadcast to each node. Join
re-ordering based on the cardinality and selectivity of the various
relations offers powerful performance improvements orthogonal to
that of map-joins.

In the rest of this section, we will provide an overview of statis-
tics collection in Shark, followed by a discussion of the cardinality
estimation techniques that we chose. We then show how the query
optimizer fits into the rest of Shark’s architecture and proceed to
explain the join reordering algorithm and its cost model.

5.1 Column Statistics

As discussed in database optimization literature (see, for example,
work by Jarke and Koch [34]), collecting statistics on data stored in
a database allows a number of optimization strategies. Databases
can collect statistics at differing levels of granularity, each with its
own uses. Table and partition metadata can include the total num-
ber of rows in the table or table partition. Column-level statistics
can offer more detailed information, including the number of dis-
tinct values for column and value distributions. This information is
particularly helpful for join optimization, since it allows the query
optimizer to infer the selectivity of a join and select an appropri-
ate join order. One of the trade-offs of collecting column statistics,
however, is that for large tables or large numbers of tables, the size
of the metadata can grow quite large and become prohibitively ex-
pensive to keep up to date.

With the release of version 0.10, Hive introduced support for
collecting column-level statistics in addition to existing table and
partition statistics. The metrics now supported include:

• Number of distinct values

• Highest value

• Lowest value

• Number of null values

• Number of true / false values (for booleans)

• Min column length

• Max column length

• Average column length

In addition to distinct values, column boundary statistics (max,
min) and the number of nulls and true/false values are particularly
helpful for the query optimizer that we implemented. Knowing
these values allows the optimizer to better estimate the impact of a
predicate’s selectivity on the size of a join result. The max and min
allow us to estimate the selectivity of range conditions, while the
nulls and booleans allow estimates for queries that involve those
values.

We have chosen to implement our initial join query optimizer for
Shark using the statistics outlined above. Support for histograms is
planned as well, as we discuss in Section 7.2.1.

5.2 Implementation of Statistics Collection
Shark collects statistics information in two ways, depending on the
type of table in question. If a table is not cached in memory, but
will be accessed instead from disk, Shark uses Hive’s implemen-
tation of table, partition and column statistics collection. Statistics
collection in Hive does not occur automatically, since none of the
source data is actually processed when creating a table. The bene-
fit of this is that it is quick to import data into the Hive metastore
and make modifications to table schemata. However, for statistics
to be computed on a given relation, a user needs to execute the fol-
lowing queries, which collect table-level and column-level statistics
respectively and require full table scans.

ANALYZE TABLE table_name COMPUTE STATISTCS
ANALYZE TABLE table_name COMPUTE COLUMN

STATISTICS FOR COLUMNS col1, col2, ..., coln

These initiate a MapReduce job that calculates the statistics and
saves them to the Hive metastore. Since column statistics collection
was only added to Hive in version 0.10, we modified Shark (previ-
ously compatible only with Hive version 0.9) to provide compati-
bility with the significant API changes and feature additions present
through Hive 0.11.

If, on the other hand, table is not on-disk but in-memory, i.e., stored
as an RDD that is cached in the cluster’s main memory, then statis-
tics collection happens when the RDD is created and cached. Be-
cause the table data is already being processed, that is, read from
disk and saved to memory, we simply add the statistics collection
layer on top and thus avoid the overhead of launching an additional
task. Furthermore, since cached tables in Shark are immutable, we
need not worry that the statistics will become stale and require re-
calculation. Specifically, the statistics collection is invoked during
the execution of the Memory Sink operator, as illustrated in Figure
6.

5.3 Cardinality Estimation
Cardinality estimation is the computation of the number of distinct
elements in a set or stream of data. The exact cardinality can be
found easily in space linear to the cardinality itself. However, for
sets with many unique values, this is infeasible. Furthermore, since
Shark’s statistics collection for cached tables occurs simultaneously
with tables being loaded into memory, it is critical for the memory
usage of any statistics collection to be efficient. Naive cardinality
estimation, in the worst case, would require storing each unique
value of each column in a table. Fortunately, several space-efficient
algorithms exist to compute approximate cardinalities within a cer-
tain margin of error. Beginning with the seminal work of Flajolet
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Figure 6: Statistics collection in Shark for on-disk and cached
tables.

and Martin [23], probabilistic counting techniques for cardinality
estimation have attracted wide attention among researchers. Sev-
eral overviews of existing algorithms are available [19, 39].

Hive uses the Probabilistic Counting with Stochastic Averaging
(PCSA) algorithm described by Flajolet and Martin [23]. While
this algorithm requires space only logarithmic to the cardinality, it
is not as space-efficient as later algorithms like LogLog and Hyper-
LogLog for statements of similar accuracy. However, since statis-
tics collection for Hive tables must be done manually and via a
separate MapReduce stats task anyway, minimizing memory con-
sumption is not as critical as it is when simultaneously loading a
table into memory as is done during statistics collection for cached
tables. Thus, for on-disk tables we currently use Hive’s own cardi-
nality estimation functionality.

For statistics on cached tables in Shark, since the collection is be-
ing done via “piggybacking" on an already memory-intensive task
(caching the RDDs), we had somewhat different criteria for a car-
dinality estimator. Although accuracy is desirable, the cost-based
optimizer does not require absolutely accurate cardinality statistics
in order to produce a better join order. Our requirements for a car-
dinality estimator were the following:

• Low Memory Overhead. In order to support huge datasets
with very large cardinalities, we need the memory impact
of the estimator to be minimal (certainly not linear with the
cardinality).

• Speed. Since one of the primary benefits of Shark is its low
latency in query execution and since loading data into mem-
ory already takes substantial time, we tried to avoid algo-
rithms that would require hash functions that take longer to
compute.

• Accuracy. The more accurate the results of the cardinality es-
timator, the better the cost-based optimizer is able to choose
an efficient join plan.

Given this, we decided to use the HyperLogLog algorithm de-
scribed by Flajolet et al. [24]. We chose to incorporate the imple-
mentation included in Stream-lib, an open-source Java library of
several algorithms for summarizing stream data [3].

The HyperLogLog algorithm takes a byte array as input. To
avoid the overhead of storing entire objects, HyperLogLog takes
a hash of the value being stored. The hash is simply a byte array, so
it can be generated with any hashing function. In contrast to cryp-
tographic applications of hashes, properties like pre-image resis-
tance are not as relevant as speed and collision resistance. Because
cryptographic hashes like MD5, SHA-1, or SHA-256 are relatively
slow to compute, Shark instead uses MurmurHash [10], which can
be computed much more quickly, while still providing adequately
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Figure 7: Performance comparison of MurmurHash imple-
mentations.

random distribution of keys and collision resistance. Furthermore,
a comparison of using MurmurHash, SHA-1, SHA-256 and MD5
hashes as input to HyperLogLog reveals no significant difference
in accuracy between them [28].

Given the need for the hash function to be extremely fast to com-
pute in order to minimize the impact on the speed of caching tables
in Shark, we performed a set of micro-benchmarks on several Mur-
murHash implementations. These included a 128-bit implementa-
tion already present in Shark, as well as 64-bit and 32-bit imple-
mentations offered by Google’s Guava library [4] and Stream-lib.
As shown in Figure 7, the native Shark and Stream-lib implementa-
tions outperformed Guava by a significant margin on most inputs.
As a result, we chose to use Stream-lib’s 32-bit MurmurHash im-
plementation, since the HyperLogLog estimator for the accuracy
that we desired in fact only uses 16 bits of the hash.

5.4 Cost-Based Optimizer Architecture

We present a brief overview of how the cost-based join optimizer
fits into the rest of the Shark architecture and illustrate it in Fig-
ure 8. As mentioned earlier, Shark uses the Hive query compiler
to parse the query into an abstract syntax tree (AST). This AST
is then transformed into a logical plan and Hive operator tree that
Shark then converts to Shark operators. Shark invokes the cost-
based optimizer immediately before Hive’s logical plan and oper-
ator tree generation. Shark does not manipulate the AST itself to
rewrite the query, but rather lets Hive create its own join plan. This
is useful because Hive performs some basic optimizations at this
stage, including predicate pushdowns.

Shark’s cost-based optimizer then examines the join order cho-
sen by Hive, extracts the join conditions and predicates, enumerates
the possible join orders and chooses the join plan with the least
cost as calculated by its cost function. It then creates a new join
tree with this ordering, sending it back to Hive’s semantic analyzer
to perform more optimizations. At this stage, Hive performs ad-
ditional optimizations relevant to the operator tree creation. For
example, it merges join tree nodes that have the same join key. If,
say, the query specifies a join between A, B and C on A.c1 = B.c2
and A.c1 = C.c3, Hive can avoid creating a second join operator
that would necessitate a second shuffle. Finally, Shark transforms
the Hive operator tree into Shark operators and executes the query
plan.

5.5 Enumeration and Selection of Query Plans

Depending on the number of relations joined in a query, the number
of possible join orderings can be extremely large. To mitigate this
concern somewhat, Shark’s optimizer adopts the approach outlined
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Figure 8: Integration of join optimizer (purple) in existing
Shark semantic analyzer components (blue).

in System R of considering only left-deep query plans. In left-deep
trees, the inner relation of each join node is always a base relation,
while the outer is either a base relation (in the outermost join node)
or a composite relation (a child join node) in every other case. This
effectively reduces the search space of possible join plans for n
base relations to n!, instead of an even larger number. Left-deep
join plans differ only in join type and order of the relations, which
can be represented linearly, making them especially simple to ma-
nipulate. We leave the examination of other plans, including bushy
tree plans, to future work (see Section 7.2.3).

The optimizer enumerates all possible left-deep plans and selects
the best one using a variation of the dynamic programming algo-
rithm first presented in System R. We have modified the algorithm
to consider the cumulative impact of shuffles between join opera-
tors in addition to selectivity factors and intermediate cardinalities.
This cost calculation is described in more detail in Section 5.6 and
is similar to the techniques presented by Gruenheid et al. [26] and
in Hive’s design document for adding a cost-based optimizer [43].

We prune the space of possible query plans further by applying
the heuristic of only considering join orders on which two relations
on either side of a join share a predicate. This restriction is in place
because if no join predicate exists, Shark must perform a cross join
or Cartesian product of all the rows in both relations. We do con-
sider transitivity, so if any of the relations on outer tree share the
predicate with the inner relation, the join is allowed. Non-inner
joins are appended to the end of the plan. For now, we make the
naïve assumption that these types of joins (any non-inner joins) will
be expensive. However, this largely depends on the cardinality of
the relations involved and we plan to investigate methods to opti-
mize these as well.

The following is a description of the optimizer’s bottom-up dy-
namic programming algorithm for a join query with n relations to
be joined.

Step 1 Enumerate each relation in the query.

Step 2 For each pair of relations in the query, calculate and save
the cost of joining them.

Step i For each set of i − 1 relations where 2 < i < n, get the
best plan (it will have been stored by the previous iteration).
Then compute the cost of joining it as an outer relation with
the i-th relation as the inner relation.

Step n At this point, all possible join orderings to answer the query
were created in the previous step. Return the cheapest of
these plans.

This algorithm differs from that of System R only in that it does
not consider access methods or interesting orders, which are not
relevant given Shark’s current lack of support for indexes.

5.6 Cost Model

As mentioned in the above overview of the optimizer’s dynamic
programming algorithm, the join cost estimator calculates the cost
of joining a relation to another relation or left-deep subtree. Our
cost estimate is computed based on that of the System R algorithm
as well, but instead of focusing on the I/O cost of loading a re-
lation and the CPU cost of performing the join, the cost function
measures the cumulative cost of I/O during the shuffle stages be-
tween join operations. This is better suited for MapReduce-based
database systems, because the I/O cost of shuffles often far out-
weighs any other I/O or CPU costs [26, 43]. Even though previ-
ous work on Shark resulted in the implementation of an in-memory
shuffle prototype [51] that improved the performance of shuffles,
this is not currently present in the stable version of Shark, so we
assume a high cost of performing shuffles. Other techniques like
using a RAM disk could help reduce the overhead of the shuffle
stages, but for now, we have designed the cost model to assume
that the I/O of the intermediate stages is a significant cost.

The cost of the shuffles for a query with multiple joins is roughly
proportional to the sum of the cardinalities of each intermediate
join relation. Thus, the optimizer computes the cost of joining the
nth relation to a join plan of n − 1 relations using the following
function.

CRn =

n−1∑
i=2

|Ri−1 1 Ri|

The lower limit of i = 2 is chosen because the first, left-most
join will have only single relations as its children, meaning that
there will be no shuffle at that stage. Likewise, the upper bound
of n − 1 omits the cardinality of the final relation, which will be
returned as output instead of input to a subsequent join operation.
Note that regardless of join order, the final cardinality will be the
same for any join plan.

In order to compute the cost of a join at each step of the dynamic
programming algorithm described in the previous section, the opti-
mizer needs to calculate the cardinality of joining the relations that
it receives as input. A particularly lucid explanation of join result
size estimation is available from Swami and Schiefer [46], and we
have modeled our following discussion on theirs.

The cost estimator takes two arguments. The first is the left
(outer) join plan, which is the best plan for the subset of n − 1
relations stored at the previous step. The cardinality of this join
plan is saved at the previous step as well, obviating the need to re-
calculate it. The second argument is simply the inner relation of
the current step. The cardinality is estimated using the following
equation.

|(Rout 1 Rin)|= Sj × |Rout|×|Rin|

In the equation above, Sj is the selectivity factor of the join pred-
icate. The MapReduce underpinnings of Shark and Hive’s architec-
ture make it difficult to express non-equality joins, so they are not
currently allowed in Shark. However, this restriction simplifies the
selectivity factors, allowing the optimizer to avoid calculating the
selectivity factors of inequalities in join predicates. The selectivity
factor is thus calculated as follows.

Sj =
1

max(card(cout), card(cin))
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The variables cout and cin are the columns specified in the join
predicate for the outer and inner relations respectively. The in-
tuition behind this becomes more clear by examining how it is
derived. Assuming uniformity in the distribution of values in a
relation’s join column, for each distinct value in c, there should
be |R|/c tuples that contain that value. We can further assume
that when joining two relations, the set of values in the join col-
umn with the lower cardinality is contained in the set of values
of the column with the larger cardinality. This means that the
number of distinct values present in both of the tables should be
min(card(cout), card(cin)). Thus, the cardinality of the join can
be computed as follows:

|(Rout 1 Rin)|= min(cout, cin)×
|Rout|
cout

× |Rin|
cin

Since cmin(c1,c2) will cancel with either c1 or c2, this will leave
us with with the larger value in the denominator.

|(Rout 1 Rin)|=
1

max(cout, cin)
× |Rout|×|Rin|

The |Rin| is actually the effective cardinality of the inner rela-
tion, that is, the number of tuples in the table multiplied by the
additional selectivity factors of any local predicates that have been
pushed down. For example, if relations R1 and R2 are joined on
R1.col1 = R2.col2 and the query includes the additional con-
straint R1.col1 = 100, the filter operator will be pushed down
below the join operator, passing only those tuple fromR1 that have
col1 = 100 to the join operator, effectively reducing the relation’s
cardinality. If we assume a uniform distribution of tuples among
the values of the column, this would be 1

card(column)
. The selectiv-

ity factors for local predicates, which unlike join predicates are not
limited to equalities, are calculated exactly as they are in System R,
using the column statistics available for the columns involved. In
the case thatRout is composed of multiple relations, the cardinality
|Rout| is the saved cost from the previous step. If |Rout| is a single
relation (i.e., the optimizer is calculating the cost of the left-most
join tree node), then the selectivity factors of local predicates are
considered as well.

Histograms will help improve the accuracy of estimating the se-
lectivity of both join and local predicates, especially if there is skew
in the data. We have not yet added support for this in Shark, but we
plan to do so, as we discuss in Section 7.2.1).

5.7 Number of Reduce Tasks

On a shuffle join, pairs of join keys and values are distributed among
reducers. All values for a given key are sent to the same reducer,
where the actual joining of the tuples takes place. For joins with
intermediate or final results that have high cardinalities, we have
added a heuristic that automatically adjusts the number of reduce
tasks based on the expected maximum cardinality of the intermedi-
ate results of any join operator. In previous versions of Shark, the
number of reduce tasks had to be set manually by the user. If a user
were not to set it, queries with large intermediate result sets could
hang indefinitely due to memory exhaustion from all keys being
sent to a single reducer.

For joins on relations that have column statistics available, Shark
now sets the number of reducers to:

max(|R1 1 R2|, ..., |Rn−1 1 Rn|)
reduce_keys_per_task

The value of reduce_keys_per_task is initially set by default
to 10240, but is a user-configurable variable. We chose this value
arbitrarily, but it appears to provide adequate results in the exper-
iments performed so far. However, further investigation is needed
to identify the best method to set this value. Ultimately, we plan
to allow users to set a value for the maximum number of bytes that
should be sent to each reducer (which depends on available mem-
ory).

6 Performance Discussion
We evaluated the performance of Shark and compared it with that
of Hive using the Brown benchmark using 72GB of data on an
11-node cluster. The benchmark was used in [41] to compare the
performance of Apache Hadoop versus relational database systems
for large scale data processing.

6.1 Cluster Configuration

We used a cluster of 11 nodes on Amazon EC2 in the us-east-1b
availability zone. Our experiments used High-Memory Double Ex-
tra Large Instance (m2.2xlarge) nodes with 4 cores and 34 GB
of RAM. These nodes offer large memory sizes for database and
memory caching applications. We used HDFS for persistent stor-
age, with block size set to 128 MB and replication set to 3. Before
each job, we cleared OS buffer caches across the cluster to measure
disk read times accurately.

6.2 Data and Queries

We used the teragen and htmlgen programs [41] to generate a test
dataset. Using a scaling factor of 100, we generated 72 GB of data,
consisting of three tables. The tables were first generated locally on
the cluster’s master node and then copied to the HDFS cluster. The
generation and preparation of data took approximately four hours.

6.3 Performance Comparisons

We benchmarked Shark’s performance with caching enabled for
the RDDs emitted by each table scan operator. We tested three
different cases: while data is being cached on the first run, after the
input table is cached in memory, and without any caching. Shark
performs on par with or better than Hive for all of the queries in
[41] on the test dataset without caching, and has more significant
improvements once input data is cached. Additionally, caching data
does not have a major detrimental effect on its first run. In Figure 9,
we see that Shark performs equally well as Hive on uncached data,
since its runtime is dominated by loading data from disk.

The performance improves significantly when data is cached in
memory. Figure 10 demonstrates that Shark has little start-up over-
head, unlike Hive, which has high latency for any job. This allows
Shark to provide more realtime results unlike Hive, which is real-
istic primarily for batch jobs. The aggregation query, Figure 11,
shows similar performance on uncached data and improvements
once data is cached. The improvements due to caching are not as
significant as in Query 1 or Query 2 because Shark is still limited
by the shuffle phase, which requires all data to be written to disk.
Finally, Figure 12 shows that Shark has performance benefits for
joins, primarily because Shark uses hash joins while Hive relies on
Hadoop’s sort-merge joins.

Since only table scan RDDs were cached in our tests, Shark’s
performance across first and second runs of a given query corre-
sponds to the benefit from caching tables for queries of the same
type, rather than to simply caching the final result of a query. For
example, consider Query 2, which features selection and filtering.
After running the query on Shark for the first time, the table data
was cached in memory. Running the query for the second time
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Figure 10: Query 2 selection and filtering

benefited from having the table data already in memory, but selec-
tion and filtering still had to be applied to the cached table data.
We would expect similar performance to the second run when run-
ning a slightly different query instead, e.g., selecting and filtering
on different criteria.

We would observe similar caching benefits from running the
queries successively in a single Shark session. Suppose that queries
1-4 were run in succession on Shark, starting with Query 4. This
query, which features a join and aggregation across the three tables
would load the table data into memory, and would have an execu-
tion time of 164 seconds (1st run). Queries 3, 2 and 1 would already
have their tables in memory, so their execution time would be 157,
0.7 and 6 seconds respectively (corresponding to 2nd run times),
for a total of 327.7 seconds. Hive, on the other hand, would take
the sum of its original execution times, or a total of 592 seconds to
execute the same queries.

6.4 Join Performance on TPC-H Data

We tested a series of five join queries on TPC-H data sets of sizes
1GB and 10GB. The number of tables joined in each query ranged
from 4 to 8. When choosing the queries, we purposefully wrote
them in such a way that the default join order chosen by Hive and
unoptimized Shark would yield poor performance, by placing the
tables with largest cardinalities and lowest join predicate selectiv-
ities first. This helps highlight potential speedups provided by the
query optimizer when users write queries that would yield poor join
orders on their own.

We performed the experiment on Amazon EC2 using 5 m2.xlarge
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Figure 13: Join performance of five queries with joins on TPC-
H data.

nodes. Each node had 2 virtual cores, 17 GB of memory and 32
GB of local storage. The cluster was running 64-bit Linux 3.4.37,
Apache Hadoop 1.0.4 and Apache Hive 0.11. For Hive, we en-
abled JVM reuse between tasks and avoided merging small output
files, which would take an extra step after each query to perform
the merge. All queries were issued on the same cluster and on the
same, running instances of Shark and Hive to minimize known is-
sues resulting in Amazon EC2 performance variability [33].

We ran each query four times, discarded the first run, and recorded
the average of the remaining three runs. We discard the first run to
allow the JVM’s just-in-time compiler to optimize common code
paths, which should better reflect conditions in real-world deploy-
ments, where the JVM will be reused by many queries.

We measured and aggregated the query execution times of the
five queries for each of the following configurations:

• Hive 0.11

• Shark with no optimizer, all tables uncached, on-disk

• Shark with cost-based optimizer, all tables uncached, on-disk

• Shark with no optimizer, all tables cached in memory

• Shark with cost-based optimizer, all tables cached in memory

The aggregated results of these trials are illustrated in Figure 13.
For queries using cached, in-memory TPC-H tables, we saw a per-
formance improvement of 1.9× and 2.8× for Shark with join opti-
mization turned on versus Shark with join optimization off for the
1G and 10G data sets respectively. For on disk data, the speedup
was similar, at 2.1× and 2.3×. The comparison with Hive was the
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Table # rows orderkey custkey nationkey partkey
lineitem 6001215 1500000 – – 200000
customer 150000 – 150000 25 –
orders 1500000 1500000 – – –
nation 25 – – 25 –

Table 1: Table and join column cardinalities on 1G TPC-H
dataset.

most dramatic. Shark with both caching and join optimization en-
abled yielded 48× and 21× speedups over Hive on the 1G and 10G
sets. The speedup on the smaller, 1G, data set is so high relative to
the larger data set in part because of the high overhead associated
with starting Hive and Hadoop tasks.

During our experiments, we observed that the cardinality calcu-
lated by Hive’s column statistics tasks was often inaccurate. This
appears to be due to a bug in Hive’s cardinality estimator. As of
Hive version 0.11, the hash function used to offer values to the esti-
mator is not pairwise independent[49], causing poor accuracy dur-
ing cardinality estimation, especially on data like that of the TCP-H
data sets, which have primary keys in a monotonic sequence. On
the other hand, MurmurHash, the algorithm we use for Shark’s car-
dinality estimation on cached tables, is pairwise independent and
thus does not exhibit this behavior. For consistency, we manually
updated the column statistics in Hive’s metastore with those cal-
culated by Shark. This ensured that the optimizer’s cost calcula-
tions remained consistent regardless of whether it analyzed joins
on cached or uncached tables, which would use Shark and Hive-
calculated statistics respectively.

6.5 Join Reordering Example

In this section, we examine Shark’s optimization of one of the
queries used in the trials in the previous section. Consider the fol-
lowing query on the 1GB TPC-H dataset.

SELECT * FROM
customer c
JOIN orders o ON o.o_custkey = c.c_custkey
JOIN lineitem l ON o.o_orderkey = l.l_orderkey

AND l.l_partkey = "2132";
JOIN nation n ON c.n_nationkey = n.n_nationkey

We specified neither a map-join nor a streamtable hint, which
would have triggered a join re-ordering in Hive, so Hive’s logical
plan generator will choose a join ordering based only on the or-
der in which we listed the relations in the query. Even a cursory
glance at the query, however, suggests that there are some ways to
improve the join order. After all, nation is a table with fixed cardi-
nality, while lineitem has the additional predicate, l_partkey
= “2132". Table 1, which gives the cardinality for each of the
join columns as well as the local predicate on lineitem shows that
the cardinality on the partkey column is 200000, which would
considerably reduce the number of tuples that need to be joined.
This means that it might make sense to join them to another table
first to reduce the resulting cardinality, instead of joining them at
the end.

As expected, given the join order listed in the query, Hive pro-
duces the following join tree.

1c.c_nationkey = n.n_nationkey

1 o.o_orderkey = l.l_orderkey

1c.c_custkey = o.o_custkey

customer orders

lineitem
σl_partkey=“2132”

nation

Shark’s query optimizer instead chooses the following plan.

1c.c_nationkey = n.n_nationkey

1c.c_custkey = o.o_custkey

1 o.o_orderkey = l.l_orderkey

lineitem
σl_partkey=“2132”

orders

customer

nation

Part of the intuition behind the second join order’s lower cost
stems from the fact that the smaller intermediate result of join-
ing the filtered lineitem table with orders is produced first, in-
stead of joining customer and orders first, which would produce
a larger result set. This performance difference is corroborated by
the query’s execution time on the cluster (whose environment is de-
scribed in Section 6.4. Using cached versions of the tables, Shark
took 62 seconds to execute the query with join optimization turned
off (using the first join order), but only 33 seconds once the opti-
mizer replaced the original plan with the new one, a 1.9× improve-
ment.

7 Future Work
There are a number of both short-term and long term features that
we plan to add to Shark. From a usability perspective, we would
like to continue providing Shark as a drop-in replacement for Hive.
As Hive continues to evolve, this means supporting new features
and remaining compatible with Hive unit tests. Currently, Shark
is compatible with most of the features of Hive 0.11, and we plan
to soon support Hive 0.12, which provides a number of query plan
optimizations beneficial to Shark.

In the rest of this section, we detail several planned Shark-specific
features related to statistics collection and query optimization.

7.1 Automatic Tuning
In Section 5.7 we presented our algorithm for automatically select-
ing an appropriate number of reduce tasks based on the cardinalities
of relations that are joined in a query. More work is needed to mea-
sure and select optimal heuristics for this optimization. Likewise,
we would like to extend the auto-selection of reduce tasks to other
queries like GROUP BY, whose performance can also be adversely
affected by poorly tuned values for reducer numbers. Cardinality
is important to choosing the number of reducers, but we also plan
to consider other information, including estimates of reducer input
data size, which can be calculated using average row lengths and
with file sizes gleaned from HDFS. This is vital because in order to
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avoid memory exhaustion, Shark needs to ensure that sure that the
reducer input data fits in the reducer’s main memory.

7.2 Query Optimizer

The development of a full-featured cost-based query optimizer for
Shark is currently in progress and will build upon the initial version
described in this paper. The Hive project also has plans for a cost-
based optimizer on top of Optiq, an optimizer modeled on Volcano
[43, 25]. However, a Shark-specific optimizer will let us leverage
more optimizations relevant to the system’s focus on keeping data
in memory.

7.2.1 Histograms

The statistics collection framework is in place for gathering infor-
mation when tables are loaded into memory. It is easy to extend to
add support for other types of statistics. For example, histograms
would help the optimizer make better decisions about the selectiv-
ity of any given predicate. Since queries that involve joins often
include a selection on at least one attribute, and one that often nar-
rows the sizes of the relations greatly, information from histograms
will allow us to compute the selectivity factors with significantly
better accuracy.

The use of histograms, both traditional equi-depth and equi-width
as well as novel techniques, for selectivity estimation and query
optimization has been well studied by Poosala et al. [42] among
others [40]. As with cardinality estimation, we need to conserve
space and optimize for speed. This makes approximate histograms,
such as those based on reservoir sampling [50], and dynamically-
updated histograms [21] seem like viable options. Libraries such as
Coda Hale’s Metrics library [5] already implement several of these
algorithms for creating histograms on streaming data.

7.2.2 Indexing and Access Method Selection

Hive has had limited support for indexes since version 0.7, adding
bitmap indexes in 0.8. These indexes map column values to HDFS
blocks, making lookups using the index much faster than doing a
full table scan. Shark does not currently support Hive indexes, but
we are investigating adding support for them in the future, as well
as creating indexes on in-memory tables. Both approaches would
be beneficial for query optimization. For example, the cost-based
join optimizer could take into account access methods for tables,
deciding to use an index where available. Once indexes are in mem-
ory, they can also be used to substantially improve performance on
certain dimensional aggregations as well.

Another way to improve the speed of loading data to answer a
query would be to have Shark select the cached version of a table
automatically if it exists. If the contents of a Shark table exists both
in cached RDD form and as an on-disk table, the table currently
appears in the metastore as two separate tables. Whether the data
is fetched from disk or in-memory cache depends on which table is
specified by the user issuing the query. For large installations with
multiple users, this can be inconvenient, since there is currently
not a good way to keep track of which tables exist in the cache
and which ones do not. Future work could allow the optimizer
at runtime to replace on-disk tables specified in a query with in-
memory cached versions (if they exist and if the on-disk table has
not been modified since cached version was created).

7.2.3 Join Algorithms

In order to improve the optimizer’s performance on reordering joins,
we plan to consider other algorithms apart from the dynamic pro-
gramming model on left-deep trees discussed here. Increasing the
search space to include bushy trees as well can yield better or-

ders, as this includes more alternative strategies. This is well docu-
mented in database literature, including in work by Ioannidis [30].

Even examining only left-deep join trees requires exponentially
increasing numbers of calculations. Many analytics queries can
involve high numbers of relations being joined in a single query.
We would like to keep the cost of query optimization low. For
queries with joins over a certain threshold (e.g., at 6 or 7, the op-
timizer might already be considering several thousand plans, de-
pending on the join predicate heuristic), it might be reasonable to
use a greedy algorithm that doesn’t perform an exhaustive search
of all join plans, but rather selects the cheapest one at each iteration
of the enumerating algorithm.

7.2.4 Cardinality Estimation

The HyperLogLog algorithm we currently employ for cardinal-
ity estimation is actually a combination of two algorithms, Linear
Counting and LogLog, switching between from one to the other as
cardinality increases, because LogLog’s higher error rate at lower
cardinalities. However, HyperLogLog does not determine the best
point at which to make this change, leading to potentially high er-
ror rates when estimating the cardinality of certain sets. A new al-
gorithm, HyperLogLog++ [28], addresses these shortcomings, and
we plan to consider incorporating it in Shark’s cardinality estima-
tor.

8 Conclusion
We have presented Shark, a data warehouse system that combines
fast relational queries and complex analytics in a single, fault-tolerant
runtime, via Spark’s coarse-grained distributed shared-memory RDD
abstraction.

Shark significantly enhances a MapReduce-like runtime to effi-
ciently run SQL, by using existing database techniques (e.g., column-
oriented storage and statistics collection) and query optimization
that is tuned specifically to the MapReduce environment, leverag-
ing fine-grained column statistics to dynamically re-optimize join
queries at run-time.

In contrast to Hive and other data warehouse systems, Shark
takes advantage of increasing RAM capacities to keep as much
intermediate data in memory as possible, fundamentally acceler-
ating query processing for similar queries or queries over the same
dataset. This design enables Shark to approach the speedups re-
ported for MPP databases over MapReduce, while providing sup-
port for machine learning algorithms, as well as mid-query fault
tolerance across both SQL queries and machine learning computa-
tions. More fundamentally, by compiling declarative queries into a
graph of deterministic tasks, this research represents an important
step toward a unified architecture for efficiently combining com-
plex analytics and relational query processing.

We have open-sourced Shark at shark.cs.berkeley.edu.
The latest stable release implements most of the techniques dis-
cussed in this paper, while query optimization for joins, PDE and
data co-partitioning will be incorporated soon. Members of the
Shark team have also worked with two Internet companies as early
users, reporting speedups of 40–100× on production queries, con-
sistent with our results.
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